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Summary 

Recent experimental work on heavy gas dispersion, confirming that the degree of 
variability between apparently identical releases is not small, is discussed in terms of a 
simple statistical framework. It is concluded (consistent with earlier work) that there is 
strong justification for the further development of mathematical models for hazard as- 
sessment that take explicit account of variability. Such models will, of course, have to be 
tested experimentally but it is argued that, in practice, experimental estimates of the 
degree of variability depend strongly on the detailed characteristics of the concentration 
sensors, and some model calculations are presented in support of this view. The role of 
molecular diffusion is also considered as is, finally, the question of the number of repeti- 
tions of a relea.se that are needed to obtain reliable estimates of statistical properties. 

Introduction 

This paper is natural successor to an earlier paper [l] on the same topic. 
However some material from that earlier paper will be repeated here so that 
the present paper can be self-contained. 

The evolution in time and space of two separate releases of heavy gas into 
the atmosphere (and indeed of any trials involving turbulence) can never be 
the same, however much care is taken in the attempt to have conditions 
identical immediately before release. Such conditions will include the am- 
bient atmospheric turbulence, and the size, shape and density of the initial 
cloud. This paper and the earlier one deal with the differences between sep- 
arate releases (here termed variability), and the quantitative description and 
practical importance of such differences. 

Clearly the degree of variability depends on how closely conditions before 
release are controlled. This point is crucial in an understanding of variability. 
To illustrate its importance, consider a series of trials in each of which all 
characteristics of the cloud of heavy gas immediately before release are iden- 
tical. Now suppose first that all trials in the series occur under neutrally 
stable conditions with the wind at release in the same direction and having 
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the same (mean) speed. While there will be variability between trials in this 
series, its degree will obviously be less than that in a second series in which 
atmospheric conditions at release are arbitrary. Variability in this second 
series will be affected by initial differences in wind speed and direction, and 
in atmospheric stability, factors which are deliberately excluded from the 
first series. 

Quantitative assessment of variability is therefore sensible, and indeed 
possible, only if the series of releases to which the variability relates is pre- 
cisely defined. The technical term for such a precisely defined series is 
“ensemble”, a concept rightly called fundamental by Lumley and Panofsky 
[ 2, p. 61. As noted in [l] and elsewhere, a choice of an underlying ensemble 
is compulsory before every analysis of a phenomenon involving turbulent 
dispersion. In most cases this choice will be made on practical grounds; thus 
for the assessment of hazards associated with heavy gas clouds, the ensemble 
is likely to be one that includes (in proper proportions for the location) all 
weather conditions. It should be noted, however, that it is perfectly valid to 
regard this ensemble as the union of many “sub-ensembles”, each represent- 
ing release under specific weather conditions; when this point of view is 
adopted, there remains, of course, the non-trivial problem of combining the 
separate estimates from each sub-ensemble to form an estimate representa- 
tive of the whole ensemble. 

Failure in the past to specify the choice of ensemble in explicit terms has 
led to much confusing controversy, almost all of it unnecessary. 

Whatever the underlying ensemble, the inevitable turbulence ensures that 
the concentration I@, t) of the dispersing gas in any one release (or “realiza- 
tion”) of the ensemble is unpredictable, i.e. it is a random variable for each 
position x, and time after release t. Throughout this paper I’&, t) is always 
a concentration defined according to the continuum hypothesis [l] , but the 
particular units in which I’&, t) is measured (e.g. volume ratio or mass per 
unit volume) are of little importance. In view of a comment made at the 
Symposium in the discussion following this paper, it is also appropriate here 
to clarify an apparent misunderstanding regarding the definition of g, specif- 
ically the position for which x_ = 0. This position is a matter of choice; the 
many possibilities include: 

(i) z = 0 is, for all t, the centre of mass of the cloud at release, i.e. a posi- 
tion ?ixed in space; 

(ii) s = 0 is, for each t, the instantaneous centre of mass of the cloud, i.e. a 
posit:on randomly moving in space; 

(iii) ;r = O_ is, for each t, the position of a point moving with the mean wind 
and coincident at t = 0 with the centre of mass of the cloud at release, 
i.e. a position moving deterministically in space. 

Possibilities (i) and (ii) are those normally used in “absolute diffusion” and 
“relative diffusion” respectively, and, in effect, each of the three possibilities 
yields a separate ensemble. In line with earlier comments, it is evident (for 
example) that the variability when possibility (i) is adopted is much greater 
than that with possibility (ii), because with relative diffusion the large varia- 
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bility due to random meandering of the cloud as a whole is totally elim- 
inated. From the point of view of practical needs in hazard assessment, only 
possibility (i) seems ultimately viable because results and predictions are 
needed with respect to fixed spatial locations. 

Given that I’(%, t) is a random variable, there exists a probability den- 
sity function (or p.d.f.) of concentration p(B ; LX, t) with the property that 
~(0 ; z, t)6 8 is the probability in a single realization of the ensemble that the 
actual concentration I’(%, t) lies between 0 and 8 + 68, where 68 is small and 
positive. The (ensemble mean concentration C(z, t) and the mean square fluc- 
tuation 7(x_, t) are the mean and variance respectively of the distribution 
whose p.d.f. is p(0; x_, t); thus, following standard statistical definitions*, 

c(:,t)=L2 p(e ; 3, ode 22(ig)=_17 (e-c(g)P de ; K, We (1) 

As explained in detail in [ 11, C and 2 will normally be estimated experi- 
mentally by appropriate arithmetical averages of the results of many realiza- 
tions. Note that the common technique that uses time averages is legitimate 
only when conditions are statistically stationary (so that p, C and c2 are in- 
dependent of t), and this wasnot so at Thorney Island. 

When variability exists, c’<s,t) is non-zero and vice versa. Thus one na- 
tural measure of variability is I&t), where 

Jag3 
&J) = C&t) * (2) 

Although I&t) is probably the easiest measure to determine reliably from 
experiments, there are others that merit consideration. In particular, there is 
p(B ; z, t) itself, and there is the peak-to-mean ratio. 

It is worthwhile to insert here some remarks about the latter measure. The 
peak concentration measured in experiments is a highly random variable, as 
shown for example in Figure 15 of Koopman et al. [3]. This is easily under- 
standable since actual concentration distributions are highly intermittent, 
and have large spatial and temporal gradients; thus, as a consequence of the 
inevitable instrument smoothing, measured peak concentrations are normally 
much less, and by an unpredictable amount, than 0 max, the actual peak con- 
centration. It therefore does not seem sensible to base predictive models for 
hazard assessment (or anything else!) on measured peak-to-mean ratios. Even 
from a theoretical point of view, the value of Omax can have little real sig- 
nificance since (almost by definition) the probability of actual concentra- 
tions being near 0 max is very small. 

In all ways I&t) - or, equivalently, C(s,t) and Fyz,t) - is a much more 
satisfactory measure of variability than the peak-to-mean ratio. So, more am- 
bitiously, is p(O;z,t) and the earlier paper [l] contains a summary of 

*The upper limit in the integrals in (1) is taken as m so that the definitions are valid for 
all choices of the units of concentration. When the concentration is defined as a volume 
ratio, p(e ; x_, t) is identically zero for 8>8, (where 0 max =G 1 is the maximum concen- 
tration) so that the upper limits can he replaced by O-. 
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methods for hazard assessment based on it - methods whose validity has 
been illustrated in experiments by Birch, Brown and Dodson [ 41. 

Recent experimental evidence 

Deterministic models for hazard assessment ignore variability and there- 
fore (in effect) assume that I&t) <l. However, evidence summarized in [l] 
indicates that I(z,t) is never very small but takes values of order unity and 
greater. The experimental part of this evidence relied on data taken in statis- 
tically steady flows, and it is therefore important to consider two sets of 
measurements (taken since [l] was written) on fluctuations associated with 
statistically unsteady dense gas clouds. 

Hall et al. [ 51 presented wind tunnel data taken in experiments designed 
to simulate some of the heavy gas trials on Porton Down [ 6, 71. For some of 
these trials, three repeat simulations were performed, each with the same 
release conditions (although, of course, the naturally occurring turbulent 
fluctuations in the ambfent wind could not be controlled). Table 1 gives 
some details, while Figs. 1 and 2 show typical results of the graphs of mea- 
sured concentration against time since release obtained in these repeat 
simulations. 

In an extensive series of wind tunnel tests using Freon-12 (CCl,F,) for 
which pg/pa = 4.2, Meroney and Lohmeyer [8] measured concentrations in a 
wind tunnel for a variety of release conditions. Later [9] they considered 
the magnitudes of the measured concentration fluctuations, and Fig. 3 
shows, for a near ground level sensor, the derived values of I plotted against 
nondimensional downstream distance. The scatter in Fig. 3 is large partly 
because most of the points are the averages of five replications only; obvious- 
ly many more replications are needed to achieve stable estimates. 

Another probable cause of the scatter is that the values of Rio (defined in 
Table 1) vary for points in this figure, although all values exceed about 450. 

TABLE 1 

Some details of two Porton trials (numbers approximate only) 

Figure No. Porton trial u* Pg-Pa Ri, Sensor position 
in this paper No. (m s-r) - relative to release 

pa 

1 21 0.41 0.3 

2 33 0.15 1.2 

60 Ground level; 
25 m downwind. 

1800 Ground level; 
15 m dowwind. 

Notation used. Q. = air density; ps = initial gas density; u* = shear velocityin undisturbed 
atmosphere; Ri, = &gdH,, lpau: = initial Richardson number; H, = initial cloud 
height. 
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High values of Rio cause the dispersion soon after release to be dominated by 
the cloud’s negative buoyancy and not by the ambient atmosphere. Thus the 
values of I soon after release seem likely to decrease as Rio increases [lo] ; 
since Rio is an increasing function of Ho - V,,lj3 - L,,, the two pairs of curves 
marked on Fig. 3 are consistent with this belief. 

It is clear from Figs. 1 to 3 that, in general, variability is not small and, 
consistent with the earlier evidence reported in [ 11, that values of I of order 
unity are typical. Hall et al. [5, p.301 make the following comment: 
“ . . . while the model and full-scale concentration measurements sometimes 
show significant differences there are a number of plausible reasons for this, 
particularly the high levels of variability in repeat runs that can occur in the 
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Fig. 1. A wind tunnel simulation of Porton trial No. 21 by Hall et al. [5]. The solid lines 
indicate the results of the three repeat simulations and the open circles are the results in 
the trial. Data details are given in Table 1. 
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Fig. 2. A wind tunnel simulation of Porton trial No. 33 by Hall et al. [5]. Refer to 
Table 1 and the caption to Fig. 1. 
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Fig. 3. Wind tunnel measurements of I by Meroney and Lohmeyer [8, 91. Here x is 
distance downstream and the different symbols represent different release volumes and 
wind speeds, with each being the result of at least five repetitions. Details are given in 
Table 8 of [8] and Figure 13 of [9]. It should also be noted that the values of Z are 
derived from fluctuations in the maximum recorded concentration at position x and there- 
fore, strictly speaking, are not the same as the values considered in the text. However, it is 
difficult to see that the difference is important for present purposes. 

model and would exist at the full-scale. There is no way of resolving these 
differences and the conclusion of the comparison must be that the agree- 
ment. between model and full-scale measurements is the best that is likely to 
be achieved where an attempt at assessing effects due to variability has not 
been performed for both sides of the comparison. Hopefully this aspect will 
be rectified in any future exercise”. In similar vein, Meroney and Lohmeyer 
[8, p.1521 recommend: “The statistics of a single cloud release situation 
should be measured in the laboratory in detail. Even including measurements 
of this report, such information is scarce.” 

Such observations, and others made during the Sheffield Symposium, 
seem to indicate a movement since [l] was written towards general accep- 
tance of the main thesis of that paper, namely that practical models of 
hazard assessment that explicitly incorporate variability ought to be devel- 
oped and tested. 

Some theoretical considerations 

It is helpful now to proceed by considering an idealized situation. Suppose 
that the ensemble is such that at release at t=O the cloud of heavy gas has the 
same shape, the same volume L& and the same uniform concentration t9 0 in 
each realization of the ensemble. For the time being, make the additional 
assumption that molecular diffusion has negligible effect. This assumption, 
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while certainly not valid for the whole history of the dispersion, is very 
useful in a preliminary analysis because it helps understanding. The philo- 
sophy is that of Batchelor [ll] and the early part of Chatwin and Sullivan 
1121. 

Under these conditions the actual concentration r&t) must have one of 
only two values: 0 ,-, and 0. It follows that ~(8 ; x_, t), the p.d.f. of concentra- 
tion introduced earlier, must have the form [13] 

p(e;~,t)=+,t)6(e-e O)+]l-x(~,t)] s(e ), (3) 

where n&t) - often called the intermittency - is the probability that the 
point 5 is, at time t, immersed in gas. Conversely [ 1-n(s,t)] is the probabil- 
ity that the point z is, at time t, immersed in air. The simple form of (3), in 
which 6 is the Dirac delta function, occurs because, when there is no mole- 
cular diffusion, every point must either lie in gas at concentration 0 0 or in air 
at concentration 0. A special form of (3) was given as eqn. (14) of [l] . 

Use of eqn. (3) in eqn. (1) gives 

C(g,t)=e 0(E,t); C’(~,t)=e20[IT(X,t)-IT2(~,t)]. 

Hence, from eqn. (2), 

(4) 

I&J) = J- 
1 

-f = JG. 
x(x90 

(5) 
,) 

Some comments on these simple results are appropriate. All consequences 
of the random advection on p(O;g,t) are contained in the intermittency 
n&t). Note especially that n and therefore p are deterministic fields which 
depend, perhaps strongly, on the choice of ensemble (as well as on z and t). 
Thus, when 5 = ,O is fixed in space (absolute diffusion) n contains the effects 
of the meandering of the cloud as a whole, but when x = 0 is the instantane- 
ous centre of mass of the cloud (relative diffusion)“this”meandering is ex- 
cluded and only random dispersion relative to the centre influences n. In 
either of these cases (and in all other cases) the region occupied by gas in 
each realization is a randomly distorted shape of constant volume Lz, and 
this shape is randomly distributed in a region of x-space. Let the volume of 
this region of z-space have order of magnitude E3 (t), where L (like a) de- 
pends on the choice of ensemble. One way, in principle at least, of estimat- 
ing L3 (t) would be to form a composite cloud by superposing the individual 
clouds from many separate realizations, such superposition being consistent 
with the particular ensemble, and then to take L3 as the volume occupied by 
the composite cloud. It is then immediately clear, for example, that the 
value of L3 for an absolute diffusion ensemble will be much greater than 
that for a relative diffusion ensemble at the same time after release because, 
in the former case, the composite cloud is likely (because of meandering) to 
contain many individual clouds that do not overlap, whereas, in the latter 
case, the choice of x = 0 ensures that the centres of all the individual clouds 
coincide. From thedefinition of L3 it is now apparent that for most x (i.e. 



288 

outside any “core” there might be in the structure - see Chatwin and SuIli- 
van [12,14]), 

Lo 3 
n- ( 1 -r ’ (6) 

where - denotes “order of magnitude”, and therefore from eqn. (4) that 

where Q is the total quantity of dispersing gas in arbitrary units. In passing, 
note that the result for C in eqn. (4) provides a second, and more practically 
viable, way of estimating L3. From these results it also follows that 

I-JQA (6) 

using eqn. (2) or eqn. (5). 
Evidently L3 will normally be much greater than Lz except very soon after 

release. Then the results above for c’ and I can be approximated by 

F_ _ _; ,_@Y L Q2 

L3L3 
3n>1. 

0 c ( ) Lo 

(9) 

The first of these results was derived by an alternative method in [12]. For 
releases of ambient density gases into a neutrally stable atmosphere, L is 
approximately proportional* to ant, where U, is the shear velocity [ 151, so 
eqn. (9) gives I proportional* to (~*t/L,)~‘~.For the buoyancy dominated 
stages of heavy gas dispersion, L3 can be estimated through box model 
theory [16, 171 as R’H, where R=R( t) and H=H(t) are the radius and the 
height of the cylinder within which the gas is assumed to be contained. Then 
I- { l+( t/to) } s (H/H,)n where to is the buoyancy spreading time scale (of the 
order of 0.5 s at Thomey Island) and Ho is the initial cloud height. Different 
box models predict different variations of H/H, with t [18, 191 with, typi- 
cally, H/H, first decreasing and then increasing. In any event, the effects of 
negative buoyancy cause the values of I for heavy gas dispersion to grow 
much less rapidly with t, at least until these effects become negligible so that 
the gas cloud behaves passively. Since the degree of negative buoyancy is 
measured by the initial Richardson number Rio, defined in Table 1, it is now 
clear that the physical reason for the decrease of variability with increasing 
Rio - discussed in the previous section - is simply that gravity greatly re- 
duces the mean cloud size L3(t). 

*From earlier remarks in this section it will be apparent that the constants of propor- 
tionality depend on the ensemble, being greater for absolute diffusion than for relative 
diffusion. 
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A puzzle and its possible causes 

Use of eqns. (4) and (5) gives 

where, in view of the universally observed rapid mixing, the approximation 
seems likely to be valid for heavy gas clouds almost immediately after re- 
lease. Recall that eqn. (10) is not merely a statement about order of mag- 
nitudes, but is exact provided the initial cloud has uniform concentration ITI,, 
and provided the effects of molecular diffusion are negligible*. When, as in 
the experiments of Meroney and Lohmeyer [E&9], the release is of pure gas 
with concentrations measured as volume ratios, the value of B0 is 1 and so 

1 
I LZ- 

C’h’ (11) 

Figure 4, taken from [9], shows the data of Fig. 3, but with I now plotted 
against C. Although the scatter is large for the reasons already indicated, 
there is a general indication (noted in [ 91 by Meroney and Lohmeyer) that 
I decreases with C. However 95% of the data lie below the solid line on 
Fig. 4, which is a graph of 

0.02 ‘/l ( 1 0.14 
I= - 

C 
CC’/2 (12) 

Fig. 4. Wind tunnel measurements of Z by Meroney and Lohmeyer [B, 91. Refer to the 
caption to Fig. 3. 

*Note that eqn. (10) holds whatever the ensemble, i.e. the differences between different 
ensembles is entirely due to the inevitable differences in values of C=C(sc,t). 



The large discrepancy between the constants in eqns. (11) and (12) needs 
and merits further investigation. There are only three possible causes of the 
discrepancy. These are: 
(1) the initial cloud is not of uniform concentration; 
(2) the effects of molecular diffusion are important; 
(3) the large difference is due to instrumentation effects. 

The effect of (1) alone would, in general, be to give a range of actual con- 
centrations, hence causing the actual p:d.f. to be much more complicated 
than the simple form in eqn. (3). However this effect was not present in the 
pure gas releases from which the data in Fig. 4 were derived and cannot 
therefore explain the discrepancy between eqns. (11) and (12). Nor does this 
effect seem likely to be significant in any analysis of variability in the 
Thorney Island trials since D.R. Johnson of N.M.I. Ltd. informs us that very 
little departure from uniformity was observed during the monitoring of gas 
concentrations immediately prior to release. More generally, this effect by 
itself cannot cause order of magnitude dyartures from eqn. (11) since the 
order of magnitude estimates of C and c2 in eqns. (7) and (9) respectively 
hold [ 121 irrespective of whether the p.d.f. is given by eqn. (3). 

The conclusion therefore is that the resolution of the puzzle must lie in 
effects (2) and/or (3). It is helpful first to consider effect (3) in isolation, 
thereby postponing the discussion of molecular diffusion until later. 

Instrument smoothing 

The potential importance of instrument smoothing was discussed in [l] 
and it is useful to summarize the main points made there. Casual observation 
of any single realization of a turbulent diffusion phenomenon, e.g. smoke 
from a cigarette, shows a very fine-scale spatial structure in the concentra- 
tion field which, because of the advection, is inevitably accompanied by very 
rapid temporal changes. According to estimates in [ 11, typical length and 
time scales for this fine structure are of order 10m3 m and 10m3 s respectively 
in field trials like those at Thorney Island. Although many different types of 
instrument are used to measure gas concentrations it is fair to say that none 
is capable of resolving simultaneously both the fine scale spatial structure (in 
each of three dimensions) and the rapidly changing temporal structure. 

The degree of instrument smoothing has been estimated for various types 
of sensor commonly used in wind tunnels. The data shown in Figs. 1 to 4 
were obtained using aspirated hot-wire anemometers of a type whose 
response time is of order 10m3 s, according to Wilson and Netterville [20]. 
Calculations by Perry [21] suggest that the response time is even smaller 
(down to order lo-’ s) for a probe using the same principle but of the type 
described, for example, by Brown and Rebollo [22]. However the spatial 
resolution of such instruments seems less satisfactory since measurements in- 
volve averaging over a spatial volume in the approximate shape of a cylinder 
of radius of order 2X10-’ m and length of order several millimetres. For the 
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data in Figs. 1 and 2, for example, Hall et al. [5] state that the spatial resolu- 
tion was typically of a few millimetres. According to Fackrell [23], similar 
response times and spatial resolution occur with the flame ionisation de- 
tector used to obtain the data in Fackrell and Robins [24, 251 quoted in 
[II * 

Instruments used in field trials, such as the ion generator-collector system 
of Jones [26] and the oxygen deficiency meters used at Thorney Island, are 
normally larger than laboratory probes since, necessarily, they are much 
more robust. Although much improvement has occurred in reducing re- 
sponse times, the spatial resolution achieved in field trials, including Thorney 
Island, is typically of order centimetres rather than millimetres. 

The need to consider instrument smoothing in interpreting the results of 
turbulent diffusion experiments has, of course, long been recognized. Most 
accounts, such as that in Pasquill [ 27, pp. 11-223, are almost exclusively in 
terms of Fourier spectra. For phenomena that are intrinsically unsteady and 
inhomogeneous (in a statistical sense), like the Thorney Island trials, use of 
Fourier spectra to present the data has little merit since comparison with 
theory is not effectively made easier, yet the data are taken one step further 
away from reality. Because of the wide variety of instruments that are used 
in practice, it is obvious that no simple rule will be adequate in all cases 
where smoothing is important. At present, it is realistic only to consider 
simple models with the aim simply of assessing whether smoothing is likely 
to be significant. 

Here particular concern will be with modelling the effects of finite spatial 
resolution on C, 2 and I, using the idealized situation shown schematically 
in Fig. 5, which represents a onedimensional traverse across the interior of a 
cloud. The concentration is non-zero, with value 0 ,,, only in blocks of con- 
stant thickness h, and the distance X between successive pairs of blocks is a 
random variable with p.d.f. f(E), where O<[<- and f(g) is the same for all 
pairs of blocks. Suppose that the mean of X is n, so that 

Fig. 5. Definition sketch for a one-dimensional model of instrument smoothing. Note that 
X, and X, are two random values of X. 

This model is one for which the p.d.f. of concentration ~(e;~,t) is given by 
eqn. (3) with, clearly, the intermittency given by 

x 
n&t) = 710 =-. 

v+h 
(14) 
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Thus, using eqn. (4), 

c = noeo; 2 = (n,-+#$. (15) 

Now suppose that this distribution of concentration is sampled with a 
probe of width L, (and zero time constant) so that the measured concentra- 
tion rrn is 

x*+ L, 
r,=$ J r(x)&, (16) 

* & 

where X0 is uniformly distributed (so that 1~~ in eqn. (14) is the probability 
that X0 is in one of the blocks of non-zero concentration), and I’(x) is the 
actual concentration, equal to B. or 0. It follows immediately from eqn. (16) 
that Cm, the ensemble mean measured concentration, satisfies 

x0+& cm=+- J CdX=C, (17) 

* X0 

since the random variables X0 and r are independent; thus the mean concen- 
tration is unaffected by smoothing. On the other hand 2m, the ensemble 
mean square measured fluctuation, is changed according to the well-known 
formula [e.g. 2, p. 361 

7 
cm 2 
ji- =L, [ (1 - ;)dx)dx, (18) 

where 

P(X) = c(x+y MY )P, (1% 

is the spatial autocorrelation of the fluctuating concentration. Determination 
of the form of p(x) requires specification of f(E); the obvious choice, consis- 
tent with eqn. (13), is 

f(t) = n ewrh. (20) 

Use in eqn. (18) of the p(x) consistent with eqn. (2OLleads, after calcula- 
tions whose details will be given elsewhere, to values of c’,/3 which are typi- 
fied by the graphs in Figs. 6. Use of eqn. (18), but in models of the effects of 
time averaging, has also been made by Venkatram [ 281 and by Sykes [ 291. 

The idea of this simple model is, of course, that it may qualitatively re- 
present the intermittent structure within a gas cloud or plume so that X is of 
order 10m3 m (i.e. h is of the same order as the conduction cut-off length A, 
discussed in [ 1, 12, 141). While observed values of the intermittency no vary 
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greatly between zero and unity, as shown by the results of Jones [26] and 
Fackrell and Robins [24, 251, Fig. 6(a) shows greatly reduced values of the 
perceived mean square fluctuation for all values of no even for low values of 
L,.X (relatively little spatial smoothing). Figure 6(b) shows that this trend 
continues, albeit at a slower rate, as L,/X increases for small values of no. 
Thus this simple one-dimensional model of smoothing effects predicts mea- 

Fig. 6. (a) Model calculations of &/l;?: for various values of n, for L,/A<~. (b) Model 
calculations of z/S for n,+O for L,/h<12. 
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sured values of the mean square fluctuation that are lower by an order of 
magnitude than the actual values when L&-10. This degree of smoothing 
is likely to be present in many experiments, including the Thorney Island 
trials. 

Of course, the quantitative results in Fig. 6 cannot be applied directly to 
real clouds, where a traverse would give gas-containing blocks of varying 
widths and varying distributions of concentration. Also, because of mole- 
cular diffusion, the spaces between the blocks are likely to contain not pure 
air but gas at low concentrations, and geometrical differences between one- 
and three-dimensional space cause changes in the values of the intermittency. 
Real instruments give measurements affected by temporal, as well as spatial, 
smoothing. Finally the calculation above focuses on structure within the 
instantaneous cloud and takes no account of meandering, in complete con- 
trast to the model in [29] ; it is therefore primarily relevant to a relative 
diffusion ensemble. 

Some comments on molecular diffusion 

While the net quantitative effect of the complications discussed in the pre- 
vious paragraph is impossible to assess, it is difficult to escape the conclusion 
that instrument smoothing could cause, even in well-conducted trials in wind 
tunnels, differences between theory and experiment that are at least of the 
magnitude of the difference between eqi+ (11) and (12). 

On the other hand, the values, of c2 predicted by the idealized theory 
above are incorrect because of dissipation due to molecular diffusion. It is 
easy to derive the exact equation [see e.g. 121 

(21) 

where K is the molecular diffusivity and the integrals are over the whole of 
space*. By mass conservation C-Q/L3 - eqn. (7) - whether or not mole- 
cular diffusion effects are important, and so the integrals involving C in eqn. 
(21) both tend to zero. If the rate of this convergenEe to zero 
fast, eqn. (21) becomes 

“s2 dv=-2/$mdV, 
dt 

and this equation should have (at least) qualitative validity in other circum- 
stances. The right-hand side of eqn. (22) is negative definite and hence 

s 
3 c dV+ 0 as t+-. (23) 

is sufficiently 

(22) 

*In practice, of course, the integrals need only be taken over the volume over which C 
and 2 are effectively different from zero. 
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Most research on the rate of decay of 2 has occurred for conditions which 
are statistically steady and homogeneous, at least to good approximation, 
and papers by Lundgren [30] and Newman et al. [31] illustrate the two 
main, and contrasting, approaches to the problem. Unfortunately, the 
methods discussed in such papers cannot be applied easily to the normal case 
(and that of present interest) where conditions are neither steady nor homo- 
geneous and, consequently, research in this area is currently rather contro- 
versial, although there is one point that is generally agreed. This is that the 
rate of decay of 7 depends on the release conditions, particularly Lo. 

To summarize, molecular diffusion ensures that c2 tends to zero as t in- 
creases more quickly than is given in eqn. (9). On the other hand, F&, the 
measured value, is lower, probably much lower, than 2 as the result of un- 
avoidable smoothing. The interpretation of experimental data on variability 
is therefore extremely difficult. Nor has theoretical work progressed very far; 
Durbin [32] presented an im@ative model in which the quantity con- 
sidered was a smeared value of c’, intended to represent the net effects of 
both molecular diffusion and instrumentation. The model does not appear to 
be applicable to dispersion of a cloud in three dimensions, nor does it appear 
likely that the two separate effects can be adequately treated in the same 
simple way because, for one thing, the effects of instrumentation are ob- 
viously dependent on the size of the instrument. 

At present therefore the way in which these difficulties should be resolved 
is unknown. Moreover, as was evident from discussion at the end of the pre- 
sentation of this paper at the Symposium, their consideration often leads to 
heated argument. Here we wish only to reiterate the views we expressed at 
that time. Firstly, even though molecular diffusion acts directly onlyon the 
very fine-scale structure of the concentration field, its net effect on c2 is ulti- 
mately substantial and cannot be ignored *. Secondly, we believe that mea- 
sured profiles of 2 are significantly affected by instrumentation. 

The assessment of variables from experiments 

In experiments like those at Thorney Island (and earlier at Porton), cost 
prohibits the systematic repetition of a release. Thus the mean concentration 
C&t) and the mean square fluctuation 2&t) cannot be estimated in the 
standard way using arithmetical averages and discussed in [l] . It is neverthe- 
less important to examine the results of such field trials to assess, if possible, 
whether the data from large-scale releases are consistent with values of C and 
2 that are observed in wind tunnel experiments, and also to validate scaling 
laws. Such an examination of the Thorney Island data is being undertaken 

*We record also our opinion that a reliable estimate of this net effect of K on 2 will re- 
quire consideration of (a) the fact that dispersion takes place in three dimensions and 
(b) that there is a finite volume of dispersing gas. Consequently we are doubtful of the 
worth of some estimates obtained, in effect, by extending results from one-dimensional 
models with homogeneous conditions. 



by one of us in collaboration with A. Mercer of the Health and Safety 
Executive, and the results will be reported later. 

In the meantime, however, it is probably helpful to make some comments 
on another problem. When variability is to be assessed from the results of 
wind tunnel tests, it is sensible to estimate, in advance, the number of repeti- 
tions needed to achieve estimates with some specified reliability. Having de- 
cided the ensemble, suppose N repetitions of the release are performed in 
each of which the concentration I’ is measured for the same E and the same 
time after release t. These readings of concentration are to be used to estim- 
ate the mean concentration C=C(z,t) and the mean square fluctuation p= 
c”(z,t). (More precisely, it will be clear from comments above that the 
readings can be used only to estimate the mean measured concentration Cm 
and the mean square measured fluctuation z but this important distinction 
does not affect the calculations below and will not be referred to again.) 
Let I’(n) be th e measured value of I’ in the nth of the N releases. Then un- 
biased estimates of C and 2 are m and s2, where 

1N 
m=;5 nGl I+); s~=(--& ?I (r(n)-m)2. 

n 
(24) 

Standard results from statistical theory [33] are that, when r has a normal 
distribution, 

t = On--C)fl 
S 

(25) 

is a reading from a population with Student’s t distribution with (N-l) de- 
grees of freedom, and 

z = W-lb’ 
c’ 

(26) 

is a reading from a population with the x2 distribution with (N-l) degrees of 
freedom. Observations of the p.d.f. of I such as those in [24, 341 show that, 
in general, the distribution of I is not normal. However the central limit 
theorem ensures that, whatever the p.d.f. of I’, the calculations below will be 
valid to a high degree of approximation. 

Confidence intervals for C and 2 are obtained in the normal way. Thus 
the interval 

( m -$,m+ 5 ) (27) 

will contain C for 100(1-2a)% of the possible values of m and s, where t, is 
the appropriate reading from a table of Student’s t distribution with (N-l) 
degrees of freedom [ 35 J . Similarly the interval 
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(N-l)s2 (N-1)$ -- 
2 (28) 

XOr ’ xi-, 

will contain 2 for lOO(l-2o)% of the possible values of s. The choice of a! is 
of course a matter for the experimenter. It is, however, obvious that the 
smaller cu is, the larger are the lengths of the confidence intervals in (27) and 
(28) for fixed N. Hence, for a confidence interval of specified length, smaller 
values of a! yield larger values of N. 

The use of confidence intervals like those above is best illustrated by one 
or two specific numerical examples, and here we consider only (28), the con- 
fidence interval for 2. The treatment below is very like that in [33, pp. 
56-581. Let the midpoint of the confidence interval for c’ be si , where 

* _ W--lb2 1 ; l 
s* - - 

2 1 I 

) 

xi x:_ 
(2% 

from (28). It is natural to choose N so that the half-width of the confidence 
interval is a specified fraction p of si; thus 

/3(N-l)s2 1 
2 [%+&I =y [&+.I +=;;-;;-I (30) 

For values of 030, the distribution of m is approximately normal 
with mean dm and variance unity. This enables (30) to be solved for N 
in terms of Us, where u, is the appropriate reading from a table of the 
normaldistribution. The result is 

(31) 

correcting an error in [33]. The meaning of this formula is that it gives the 
minimum value of N which ensures that the lOO(l-2o)% confidence interval 
for 2 has the required precision specified by p. Table 2 gives some illustra- 

TABLE 2 

Calculated values of N from eqn. (3 1) 

Ly Uo1 B N 

0.05 1.645 0.25 86 
0.05 1.645 0.05 2164 

0.025 1.96 0.25 121 
0.025 1.96 0.05 3071 

0.005 2.575 0.25 207 
0.005 2.575 0.05 5300 
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tive values of N for 90%, 95% and 99% confidence intervals. Particularly 
noteworthy is the great increase in N caused by increased precision, which 
arises because the length of the confidence interval for 2 only decreases to 
zero as N”‘. To give a further example to reinforce this point, the value of 
iV when ~~0.05 (90% confidence interval) and p is as low as 0.01 is greater 
than 54000! It is therefore practically viable only to carry out sufficient 
repetitions to obtain estimates of 2 of relatively low precision. However, 
calculations in [33, pp. 35-371 suggest that, for values of N of order 100, 
higher precision estimates of C can be obtained than for F, although in this 
case the value of N is rather sensitively dependent on the measuredvalue of I 
(equal to s/m), where I is defined in eqn. (2). 

Concluding remarks 

The evidence presented in this paper reinforces the main conclusion of [l] , 
namely that the study of variability merits the increased theoretical and 
practical attention that it is receiving, despite certain serious difficulties that 
have become more apparent. From the point of view of assessing hazards 
associated with dispersing heavy gas clouds, the practical purpose of this 
study is to facilitate the design and validation of models that include varia- 
bility explicitly, and are therefore more realistic than most existing models. 
Although further discussion is not included here, it should be recorded that 
such models are being developed in a variety of fields. Apart from that 
whose basis was summarized in [ 11, Ride [ 36, 371 and Griffiths and Harper 
[38] have published work specifically directed towards toxic hazards, and 
Wilson [39] has proposed, and discussed in some detail, a model primarily 
designed for dealing with hazards arising from pipeline rupture. 
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